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Achronal generalized synchronization in mutually coupled semiconductor lasers
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Heil et al. @Phys. Rev. Lett.86, 795 ~2001!# recently discovered achronal synchronization of chaos in
mutually coupled semiconductor lasers. This paper offers an analytic interpretation of their experiment using a
simple rate equation model. Local eigenvalue analysis shows that isochronal synchronization is unstable;
achronal synchronization, on the other hand, is stable if a generalized synchronization function is introduced.
Single- and multimode simulations have substantiated this rate equation interpretation. Finally, there is a brief
examination of ‘‘chaos pass filtering.’’
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Pecora and Carrol’s influential paper@1# set in motion
work synchronizing chaotic electronic@2# and optical @3#
systems. Optical systems are especially interesting as
can have infinite-dimensional@4,5# and spatiotemporal@5,6#
chaos. Most optical systems use a feedback delay (t1) to
drive the oscillator into a chaotic state and a coupling de
(t2) to couple the light into another oscillator@7#. If t1
Þt2 then achronal synchronization, where the driven os
lator’s dynamics lag or anticipate the driving oscillator’s d
namics, occurs@8,9#. Mutually coupled lasers, where eac
laser’s feedback is symmetrically replaced by the dela
electric field from the other, were not expected to have a
ronal synchronization sincet15t2 . However, Heil et al.
@10# recently discovered achronal synchronization in mu
ally coupled lasers. Numerical models also possessed ac
nal synchronization@10,11# but did not explain the lack o
isochronal synchronization—that is, both lasers having
same dynamicsat the same time.

This paper offers an analytic interpretation of achro
synchronization in mutually coupled lasers. Isochronal s
chronization can be described intuitively: each laser p
duces oscillations in its identical companion as if there w
feedback with a time delay equal to the coupling delay. T
solution is unstable. Achronal synchronization is stable,
it has a counter-intuitive construction: stable synchronizat
requires feedback with a delay time twice that of the co
pling delay. This construction is an exact solution for on
one laser, the other laser’s oscillations are not described
this solution and a small error determined by the construc
solution will always exist. Boccaletti, Pecora, and Pelae
framework for synchronization@12# classifies systems with
these characteristics as generalized synchronization ins
of the simpler identical synchronization.

The analysis begins with the standard single-mode
equations for a semiconductor laser with delayed inject
@13#
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de1,2~ t !

dt
5Ga$@n1,2~ t !2ntr #2 ian1,2~ t !%

3e1,2~ t !2a inte1,2~ t !1he2,1~ t2t!,

dn1,2~ t !

dt
5J2

n1,2~ t !

tn
2a@n1,2~ t !2ntr #ue1,2~ t !u2. ~1!

Here e1,2(t) is the complex electric-field amplitude an
n1,2(t) is the carrier density for either the first or seco
laser. The usual rate equation coefficients are used:G is the
confinement factor,a is the linear differential gain,ntr is the
transparency carrier density,a is the linewidth enhancemen
factor,a int is the internal loss~including the facet losses!, J
is the current pumping density, andtn is the effective carrier
lifetime. The coupling term consists of an attenuationh and
a delayt.

First, isochronal synchronization is shown to be unstab
e1(t)5e2(t)5e(t) exactly solves Eq.~1! if e(t) is also the
solution of an identical laser with feedbacke(t2t). This
does not imply the existence of an external cavity but lin
by analogy, the synchronized solutione(t) to the Lang-
Kobayashi solution@13#. Analogy betweene(t) and external
cavity lasers permits the use of established results, assoc
a physical interpretation to a mathematical abstraction,
generally illuminates the analysis.

Small perturbations~denoted byd! may drive the system
from synchronization. Stability is governed by
©2002 The American Physical Society29-1
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lS de
de*
dn

D 5S 2h
e~ t2t!

e~ t !
~11e2lt! 0 Ga~12 ia!

0 2h*
e* ~ t2t!

e* ~ t !
~11e2lt! Ga~11 ia!

2a@n~ t !2ntr #ue~ t !u2 2a@n~ t !2ntr #ue~ t !u2 2
1

tn
2aue~ t !u2

D S de
de*
dn

D . ~2!

The uncoupled case (h50) has solutions

l050,

l65

2F 1

tn
1aue~ t !u2G6AF 1

tn
1aue~ t !u2G2

28Ga2@n~ t !2ntr #ue~ t !u2

2
. ~3!
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l6 has a nonpositive real part providing thatn(t)2ntr.0.
The time-averaged local eigenvalues determine stability:

Theorem 1Suppose dy/dt5A(t)y and A(t) is always
diagonalizable. If every eigenvaluel of A(t) satisfies
Re(l)<2f(t) for some f(t).0 then

U y~ t !

y~0!
U<e2*0

t f ~z!dz. ~4!

This is not a rigorous stability criterion. Rigorous stabili
calculations are difficult, often tailored to a specific syste
~see@14# and references therein!. Easier, nonrigorous meth
ods can calculate stability without a loss of accuracy. O
common method uses the Lyapunov exponents along a
jectory, with the system being stable if all Lyapunov exp
nents are negative@1#, but it does not relate stability alon
the many possible trajectories in a chaotic attractor. Ho
ever, the eigenvalues of the Jacobian determine
Lyapunov exponents along a trajectory, so showing that
Jacobian has no positive eigenvalues is equivalent to sh
ing that the Lyapunov exponents are negative@15#. This con-
nection establishes local eigenvalue analysis as a cred
nonrigorous tool for evaluating synchronization stability. A
though Corron@16# found counterexamples to local eige
value stability analysis, he concluded that such stabi
analysis is still effective for most systems. All things cons
ered, a system is unstable if a local eigenvalue is positiv

Small values oft r uhu ~t r is the laser cavity round-trip
time! perturb the eigenvalues from theirh50 values. This
does not affect the stability ofl6 but the marginally stable
phase eigenvaluel0 is now either stable or unstable. Assum
ing the perturbation takes the forml5l01t r uhul1

1t r
2uhu2l21¯ , where l050 and t r uhu!1, then to first

order int r uhu
03622
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Fl112
h*

uhu
e* ~ t2t!

e* ~ t ! G@Ga2~12 ia!@n~ t !2ntr #ue~ t !u2#

1Fl112
h

uhu
e~ t2t!

e~ t ! G
3@Ga2~11 ia!@n~ t !2ntr #ue~ t !u2#

50. ~5!

Taking h5uhueiv0t ande(t)5A(t)eif(t) gives

l1522
A~ t2t!

A~ t !
A11a2

3cos@v0t1arctana1f~ t2t!2f~ t !#. ~6!

The delayed phase differencef(t2t)2f(t) determines
the isochronal synchronization stability. An upper bound
the delayed phase difference may be established by ana
betweene(t) and the equivalent Lang-Kobayashi solution.
the Lang-Kobayashi system, the delayed phase difference
termines the external cavity fixed points@17# and their sta-
bility @18#. Specifically, near an equivalent unstable exter
cavity fixed point

A11a cos@v0t1arctana1f~ t2t!2f~ t !#,2
1

tuhu
.

~7!

e(t) approaches an unstable fixed point prior to an exter
cavity mode hop in the Lang-Kobayashi solution. As exter
cavity mode hops are a necessary condition for chaos in
Lang-Kobayashi system, Eq.~6! inevitably becomes positive
and isochronal synchronization turns unstable. On sta
there will be an initial period of isochronal synchronizatio
lasting until immediately after the first equivalent extern
cavity mode hop ine(t).
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When isochronal synchronization loses stability a sec
solution may be chosen. Experiment and simulation sug
that achronal synchronization, consisting of a laggard so
tion e1(t)5@11de1(t)#e(t) and a leader solutione2(t)
5@11de2(t1t)#e(t1t), is selected. Direct substitution o
the synchronous solutione(t) for e1(t) ande2(t) yields

de~ t !

dt
5Ga$@n~ t !2ntr #2 ian~ t !%e~ t !2a inte~ t !

1hH e~ t ! ~subsysteme1!

e~ t22t! ~subsysteme2!
. ~8!

Two differences from isochronal synchronization are i
mediately obvious. First, a Lang-Kobayashi solution w
-
r
n-

in
-

at
i

d

03622
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-

feedback ofe(t2t) is a solution for neither subsystem. Th
equivalent Lang-Kobayashi solution requires a feedb
term ofe(t22t). Second,e(t) only satisfies the equation o
motion for the subsysteme2 ; e(t) is not an exact solution
for the subsysteme1 . Such a situation, where the synchr
nized solution solves one subsystem exactly but not
other, is best classified as generalized synchronization, w
‘‘associates the output of one system to a given function
the output of the other system’’@12#. The linearized sub-
systems are of two different types:de2 is homogeneous
~which determines stability! and de1 is inhomogeneous
~which determines the generalized synchronization functio!.

The homogeneous subsystemde2 is
lS de2

de2*
dn2

D 5S 2hF11
e~ t22t!

e~ t ! G 0 Ga~12 ia!

0 2h* F11
e* ~ t22t!

e* ~ t ! G Ga~11 ia!

2a@n~ t !2ntr #ue~ t !u2 2a@n~ t !2ntr #ue~ t !u2 2
1

tn
2aue~ t !u2

D S de2

de2*
dn2

D . ~9!
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As before, foruhu50 Eq. ~3! governs the stability. The mar
ginally stable eigenvaluel050 may become unstable fo
nonzero values ofuhu. Using the previous eigenvalue expa
sion and solving forl1 gives the stability condition

l1522A11a2Fcos@2v0t1arctana#

1
A~ t22t!

A~ t !
cos@2v0t1arctana1f~ t22t!2f~ t !#G .

~10!

This expression is identical to Eq.~6! with the addition of
a time-independent term cos@2v0 t1arctana#. The choice of
arctana’s branch guarantees that cos@2v0 t1arctana# is
greater than zero and furnishes a continually stabiliz
force. Asf(t22t)2f(t) is a chaotic variable with fluctua
tions greater than 2p, *0

t cos@f(z22t)2f(z)#dz goes to zero
for large times. Hence, the time-independent term domin
the stability for long times and achronal synchronization
stable.

The inhomogeneous subsystemde1 defines a generalize
synchronization function
g

es
s

dD~ t !5e* t0

t D~z!dzE
t0

t

e2* t0

z D~j!djQ21~z!

3S 2hS 12
e~z22t!

e~z! D
2h* S 12

e* ~z22t!

e* ~z! D
0

D dz

1dD~ t0!e* t0

t D~z!dz

[Q21~ t !†u@e~ t !#1de1~ t0!e* t0

t l~z!dz
‡. ~11!

D is the diagonal matrix containing the local eigenvalues
the subsystemde1 @Eqs.~3! and ~6! with t→2t#, dD is the
state vector of the subsystemde1 expressed in the basis ofD,
and Q is the change of coordinate matrix consisting of t
local eigenvectors.u@e(t)# is the generalized synchronizatio
function in the original basis. BothD and Q are time-
dependent matrices, making the exact calculation of the g
eralized synchronization function impractical~if not imprac-
ticable!.

Numerical integration of Eq.~1! has verified the interpre
tation presented here. Both lasers have been started from
same state and noise has driven them apart. This initial
9-3
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tion assured that the system began in the isochronal sync
nization state. After the first external cavity mode hop, is
chronal synchronization became unstable. When
instability occurs has been estimated from the error func
uA1(t)2A2(t)u. For isochronal synchronization, the pertu
bation eigenvaluel1 and the error function are plotted i
Fig. 1. Both have been averaged with a 2t full width at half
maximum ~FWHM! Gaussian filter, which~1! simulates a
finite detector response,~2! averages the inhomogeneo
contribution fromu@e(t)#, and ~3! satisfies the conditions
for local eigenvalue stability analysis. For a delay of 5 ns,
effective bandwidth of the simulated detector is 100 MH
Chaotic oscillations had set in by 40 ns, and the system
showing isochronal synchronization~as measured by the e
ror function! until 80 ns. Prior to 80 ns,l1 had some positive
spikes but still had an overall negative value. At 80 nsl1

oscillates about 0, clearly violating the conditions for stab
ity, ande(t) has had its first external cavity mode hop~Fig.

FIG. 1. Startup of the mutually coupled single-mode syste
Both lasers have been started from the same initial conditions
noise has continuously driven the system away from an iden
state.~a! Dashed line, eigenvaluel1 calculated for isochronal syn
chronization. Solid line, smoothed fit tol1 . Inset, enlarged view of
the smoothed fit tol1 . ~b! Error functionuA1(t)2A2(t)u. Dimen-
sionless parameters:G51.1, a51, ntr51, a54, a int50.27, J
54.731023, tn5333.3,h50.213eip/4, andt51515.15~5 ns!.
03622
ro-
-
e
n

e
.
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-

FIG. 2. Phase-space trajectory for the single-mode syst
Equivalent stable~unstable! external-cavity modes have been d
noted as diamonds~crosses!. Up to 80 ns~solid line! the trajectory
had remained near the first stable external cavity mode. After 8
~dashed line! the trajectory has jumped to the next stable exter
cavity mode and isochronal synchronization has become unsta

FIG. 3. As in Fig. 1 but for the multimode system.~a! Dashed
line, eigenvaluel1 calculated for isochronal synchronization. Sol
line, smoothed fit tol1 . Inset, enlarged view of the smoothed fit
l1 . ~b!: Error function uA1(t)2A2(t)u. A many-body model@11#
with the same parameters as the single-mode model has been

.
nd
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2!. After 80 ns achronal synchronization is stable and
associated eigenvalue isl1522 s21. This eigenvalue is
larger than the isochronal eigenvalue (;1028 s21), is time
independent, and is suitable for standard linear stab
analysis. So, in a single-mode simulation, the external ca
modes have destabilized isochronal synchronization w
achronal synchronization has not been affected.

Mutually coupled lasers are not likely to run single mod
even if the solitary laser runs nominally single mode. Fe
back @19# and external injection@20# excite multimode dy-
namics in single-mode lasers and multimode dynamics
change the synchronization stability@5#. Luckily, in many
instances multimode systems conserve the single-m
structure, but such requires verification before affixing
single-mode interpretation to a potentially multimode s
tem. Previous work established that achronal synchroniza
is stable for the multimode case@11#. The perturbation eigen
value l1 and the error functionuA1(t)2A2(t)u have also
been calculated for the multimode system and are plotte
Fig. 3. Initially isochronal synchronization predominated b
had lost stability within the first 100 ns, switching to achr
nal synchronization. As in the single-mode case the eig
value l1 had initially been negative, turning positive whe
isochronal synchronization lost stability. Unlike the sing
mode situation, following the onset of chaosl1 had brief
periods where it became positive, hampering isochronal s
chronization. This relates to the increased difficulty of sy
chronizing infinite-dimensional spatiotemporal chaos, wh
is present in the multimode system@5#. Still the multimode
laser has yielded to achronal synchronization by 80 ns
l1 has become positive~the onset of the first power dropou
drivesl1 negative at 100 ns!. Thus the single-mode interpre
tation applies to multimode systems as well.

Finally, the interpretation developed here can shed li
on a surprising result from@10#. In @10#, periodic perturba-
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tions made to the laggard laser altered the leader laser’s
sponse while periodic perturbations made to the leader l
did not disturb the laggard. The effect was labeled ‘‘cha
pass filtering’’ and from this the researchers concluded t
achronal synchronization acted as a unidirectional coup
system: the leader laser was the driving subsystem and
laggard laser was the driven subsystem.

In achronal synchronization, the difference between
two lasers is

de~ t !5e1~ t !2e2~ t2t!

5e2* t0

t l~z!dzde1~ t0!

2e2l1te2* t0

t l~z!dzde2~ t0!2u@e~ t !#

5@de1~ t0!2e2l1tde2~ t0!#e2* t0

t l~z!dz2u@e~ t !#.

~12!

If the leader system is perturbed@de1(t0)50 and de2(t0)
Þ0#, de(t) decays tou@e(t)#, achronal generalized syn
chronization is unaffected, and ‘‘chaos pass filtering’’ is o
served. If the laggard system is perturbed@de1(t0)Þ0 and
de2(t0)50#, achronal synchronization is affected and t
system may be driven to a different solution such as
served in@10#.

This paper has shown that, because of a phase instab
achronal synchronization is preferred over isochronal s
chronization in mutually coupled lasers. Achronal synchro
zation requires a construction that results in the two las
having different dynamics; viewed as such it is the first e
ample of generalized synchronization in optical system
Single- and multimode simulations explicitly show the pha
instability’s onset. Finally, ‘‘chaos pass filtering’’ is unde
stood as a natural consequence of achronal generalized
chronization.
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